
CSE 1321L: Programming and Problem Solving I Lab 

Lab 9 

Sequence Types (Part 2) 

 
What students will learn: 

o Using and manipulating tuples 
o Using and manipulating dictionaries 

 
Content 

o Overview 
o Lab9A: All math, all the time 
o Lab9B: User Authentication 

 
Overview 
An interesting feature in Python is the ability of seemingly returning multiple pieces of data from a 
single method, as per the syntax below: 
 

def myMethod(input1, input2): 
output1 = input1 + input2 
output2 = input1 * input2 
return output1, output2 

 
While the code above makes it seem as if multiple variables are being returned, inspecting the type 
being returned by the method reveals what is being returned: 
 

print(myMethod(2, 3)) # prints (5, 6) 
print(type(myMethod(2,3))) # prints “<class ‘tuple’>” 

 
As we can see, a method which attempts to return multiple variables packs them all into a single 
tuple, in order that they are returned. We have seen something similar to this before, when using 
the `enumerate()` method: 
 

name = “Alice” 
 

for position, letter in enumerate(name): 
print(“Letter in position ” + str(position) + “ is “ + letter) 

 
The `enumerate()` method returns two values packed into a tuple: 
The element being examined 
And the element itself 
Since we are giving the FOR loop two variables to work with (position, and letter), it automatically 
unpacks the outputs for us. However, since the output of enumerate is a tuple, we could have a 
single variable and still be able to use its output as below: 



 
name = “Alice” 

 
for pair in enumerate(name): 

print(“Letter in position ” + str(pair[0]) + “ is ” + pair[1]) 
 
Another useful feature in Python are dictionaries. Dictionaries are another type of data structure 
that we can use to store data, retrieve, update, and delete. Dictionaries work by storing and 
organizing data as key-value pairs. 
 
Key-value pairs are a way to store and organize data where each data value is represented with a 
unique identifier or key. This makes it easy to look up and retrieve the data value by just using its 
identifier. 
 
Think of it as a regular language dictionary, the words are the key, and the definition of a word is the 
data value. 
 
Dictionaries are defined using curly-braces {} and you can either create a dictionary empty or with 
some initial values: 
 

person = {} 
 

person = { 
“name”: “John”, 
“age”: 25, 
“city”: “Atlanta” 

} 
 
As you have seen, the definition of a key-value pair defines the key on the left-side, and the value on 
the right with a colon in between. 
 
You retrieve from a dictionary like a list, call the dictionary and pass the key inside the square-
brackets: 
 

print(person[“name”]) # prints “John” 
 
You can also add a new key-value entry into the dictionary by calling the dictionary and passing the 
new key inside the square-brackets: 
 

# This adds the lastname “doe” into the list 
person[“lastname”] = “Doe”  

 
To update a value in a dictionary you can use the `update()` built-in dictionary function: 
 

# This changes the name value from “John” to “James” 
person.update({“name” : “James”})  

 



Lastly, to remove an element from a dictionary, you can use the del statement like lists: 
 

# This removes the lastname key and value from the list. 
del person[“lastname”]  

 
As with previous weeks, all labs should have the appropriate file names: 

o Lab9A.py 
o Lab9B.py 

 
Lastly, make sure you review the sample output and make sure the output of your program follows 
the exact same format including the input statements, print statement, etc. As always, user input is 
shown in red and bold. 
  



Lab9A : All math, all the time 
Write a method `allMath()` which takes in two numbers as inputs and returns a tuple containing 
the result of each arithmetic operation between both numbers in the following order: addition, 
subtraction, multiplication, division, floor division, modulus, and power. If one of the operations 
requires a division by 0, replace its result with `None`. 
 
For example: 

o allMath(2, 3) would return the tuple (5, -1, 6, 0.6666666666666666, 0, 2, 8) 
o allMath(1, 8) would return the tuple (9, -7, 8, 0.125, 0, 1, 1) 
o allMath(6, 0) would return the tuple (6, 6, 0, None, None, None, 1) 
o allMath(7, 8) would return the tuple (15, -1, 56, 0.875, 0, 7, 5764801) 

 
On the main program, prompt the user for two numbers, pass those numbers to the `allMath()` 
function, and then print out the result. 
 
Note 

o You can assume both inputs are valid numbers (i.e., you do not need to check if the inputs are 
numbers) 

o Remember that while tuples are immutable, you can concatenate two tuples, much like you would 
with strings. 

 
Sample Output #1: 
Enter your first number: 5 
Enter your second number: 4 
Your resulting tuple is (9, 1, 20, 1.25, 1, 1, 625) 
 
Sample Output #2: 
Enter your first number: 8 
Enter your second number: 0 
Your resulting tuple is (8, 8, 0, None, None, None, 1) 
 
Sample Output #3: 
Enter your first number: 239 
Enter your second number: 19 
Your resulting tuple is (258, 220, 4541, 12.578947368421053, 12, 11, 
1547248669875101348163600707196216422023050959) 
  



Lab9B: User Authentication 
Build a program that authenticates the user login by asking the user for a username and a 
password. For this program, you are going to use a dictionary to store the user’s data. This is not 
ideal but just for this lab we are going to use the user’s username as the key and the password as 
the value for the username key. 
 
Requirements 

o The program must use a dictionary that stores the user password using the username as the key. 
o The program should be able to hold multiple user login information, 
o The program should also feature a “registration” option that asks the user for a username and 

password and adds it to the dictionary. 
o If the login fails by either incorrect username, incorrect password, or if the username does not exist 

in the dictionary, the program should output “Incorrect Username/Password” 
o If a login is successful, the program should show a different set of options: log out, change 

password, and exit 
o If the user chooses to log out, the program should go back to asking for login, register, or exit. 
o If the user chooses to change password, input the new password and update it in the dictionary. 
o The program stops if the user chooses to terminate it. 
o Do not worry with input validation or option validation, assume the user will always follow the 

correct program flow and input the correct options. 
 
Sample output #1:  
Choose an option 
1 - Login 
2 - Register 
E - Exit 
1 
 
[Login] 
Username: jdoe01 
Password: 4321 
Incorrect username/password! 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 
2 
 
[Register] 
Username: jdoe01 
Password: 4321 
User successfully added! 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 



1 
 
[Login] 
Username: jdoe00 
Password: 4321 
Incorrect username/password! 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 
1 
 
[Login] 
Username: jdoe01 
Password: 1234 
Incorrect username/password! 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 
1 
 
[Login] 
Username: jdoe01 
Password: 4321 
Success! 
 
Choose an option 
3 - Change Password 
4 - Logout 
E - Exit 
4 
 
Logging Out... 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 
E 
 
Terminating... 
 
Sample Output #2: 
Choose an option 
1 - Login 
2 - Register 
E - Exit 



2 
 
[Register] 
Username: jdoe01 
Password: 4321 
User successfully added! 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 
2 
 
[Register] 
Username: scrappyOwl 
Password: ksuksuksu 
User successfully added! 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 
1 
 
[Login] 
Username: jdoe01 
Password: 4321 
Success! 
 
Choose an option 
3 - Change Password 
4 - Logout 
E - Exit 
3 
 
[Changin password] 
Password: 1234 
 
Choose an option 
3 - Change Password 
4 - Logout 
E - Exit 
4 
 
Logging Out... 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 



1 
 
[Login] 
Username: jdoe01 
Password: 4321 
Incorrect username/password! 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 
1 
 
[Login] 
Username: jdoe01 
Password: 1234 
Success! 
 
Choose an option 
3 - Change Password 
4 - Logout 
E - Exit 
4 
 
Logging Out... 
 
Choose an option 
1 - Login 
2 - Register 
E - Exit 
1 
 
[Login] 
Username: scrappyOwl 
Password: ksuksuksu 
Success! 
 
Choose an option 
3 - Change Password 
4 - Logout 
E - Exit 
E 
 
Terminating... 
 
Submission Instructions:  

o Programs must follow the output format provided. This includes each blank line, colons (:), and 
other symbols. 

o Programs must be working correctly.  



o Programs must be written in Python. 
o Programs must be submitted with the correct .py format. 
o Programs must be saved in files with the correct file name: 

• Lab9A.py 
• Lab9B.py 

o Programs (source code files) must be uploaded to Gradescope by the due date.  
 


	CSE 1321L: Programming and Problem Solving I Lab
	Lab 9
	Sequence Types (Part 2)
	What students will learn:
	o Using and manipulating tuples
	o Using and manipulating dictionaries
	Content
	o Overview
	o Lab9A: All math, all the time
	o Lab9B: User Authentication
	Overview
	An interesting feature in Python is the ability of seemingly returning multiple pieces of data from a single method, as per the syntax below:
	def myMethod(input1, input2):
	output1 = input1 + input2
	output2 = input1 * input2
	return output1, output2
	While the code above makes it seem as if multiple variables are being returned, inspecting the type being returned by the method reveals what is being returned:
	print(myMethod(2, 3)) # prints (5, 6)
	print(type(myMethod(2,3))) # prints “<class ‘tuple’>”
	As we can see, a method which attempts to return multiple variables packs them all into a single tuple, in order that they are returned. We have seen something similar to this before, when using the `enumerate()` method:
	name = “Alice”
	for position, letter in enumerate(name):
	print(“Letter in position ” + str(position) + “ is “ + letter)
	The `enumerate()` method returns two values packed into a tuple:
	The element being examined
	And the element itself
	Since we are giving the FOR loop two variables to work with (position, and letter), it automatically unpacks the outputs for us. However, since the output of enumerate is a tuple, we could have a single variable and still be able to use its output as ...
	name = “Alice”
	for pair in enumerate(name):
	print(“Letter in position ” + str(pair[0]) + “ is ” + pair[1])
	Another useful feature in Python are dictionaries. Dictionaries are another type of data structure that we can use to store data, retrieve, update, and delete. Dictionaries work by storing and organizing data as key-value pairs.
	Key-value pairs are a way to store and organize data where each data value is represented with a unique identifier or key. This makes it easy to look up and retrieve the data value by just using its identifier.
	Think of it as a regular language dictionary, the words are the key, and the definition of a word is the data value.
	Dictionaries are defined using curly-braces {} and you can either create a dictionary empty or with some initial values:
	person = {}
	person = {
	“name”: “John”,
	“age”: 25,
	“city”: “Atlanta”
	}
	As you have seen, the definition of a key-value pair defines the key on the left-side, and the value on the right with a colon in between.
	You retrieve from a dictionary like a list, call the dictionary and pass the key inside the square-brackets:
	print(person[“name”]) # prints “John”
	You can also add a new key-value entry into the dictionary by calling the dictionary and passing the new key inside the square-brackets:
	# This adds the lastname “doe” into the list
	person[“lastname”] = “Doe”
	To update a value in a dictionary you can use the `update()` built-in dictionary function:
	# This changes the name value from “John” to “James”
	person.update({“name” : “James”})
	Lastly, to remove an element from a dictionary, you can use the del statement like lists:
	# This removes the lastname key and value from the list.
	del person[“lastname”]
	As with previous weeks, all labs should have the appropriate file names:
	o Lab9A.py
	o Lab9B.py
	Lastly, make sure you review the sample output and make sure the output of your program follows the exact same format including the input statements, print statement, etc. As always, user input is shown in red and bold.
	Lab9A : All math, all the time
	Write a method `allMath()` which takes in two numbers as inputs and returns a tuple containing the result of each arithmetic operation between both numbers in the following order: addition, subtraction, multiplication, division, floor division, modulu...
	For example:
	o allMath(2, 3) would return the tuple (5, -1, 6, 0.6666666666666666, 0, 2, 8)
	o allMath(1, 8) would return the tuple (9, -7, 8, 0.125, 0, 1, 1)
	o allMath(6, 0) would return the tuple (6, 6, 0, None, None, None, 1)
	o allMath(7, 8) would return the tuple (15, -1, 56, 0.875, 0, 7, 5764801)
	On the main program, prompt the user for two numbers, pass those numbers to the `allMath()` function, and then print out the result.
	Note

	o You can assume both inputs are valid numbers (i.e., you do not need to check if the inputs are numbers)
	o Remember that while tuples are immutable, you can concatenate two tuples, much like you would with strings.
	Sample Output #1:

	Enter your first number: 5
	Enter your second number: 4
	Your resulting tuple is (9, 1, 20, 1.25, 1, 1, 625)
	Sample Output #2:

	Enter your first number: 8
	Enter your second number: 0
	Your resulting tuple is (8, 8, 0, None, None, None, 1)
	Sample Output #3:

	Enter your first number: 239
	Enter your second number: 19
	Your resulting tuple is (258, 220, 4541, 12.578947368421053, 12, 11, 1547248669875101348163600707196216422023050959)
	Lab9B: User Authentication
	Build a program that authenticates the user login by asking the user for a username and a password. For this program, you are going to use a dictionary to store the user’s data. This is not ideal but just for this lab we are going to use the user’s us...
	Requirements

	o The program must use a dictionary that stores the user password using the username as the key.
	o The program should be able to hold multiple user login information,
	o The program should also feature a “registration” option that asks the user for a username and password and adds it to the dictionary.
	o If the login fails by either incorrect username, incorrect password, or if the username does not exist in the dictionary, the program should output “Incorrect Username/Password”
	o If a login is successful, the program should show a different set of options: log out, change password, and exit
	o If the user chooses to log out, the program should go back to asking for login, register, or exit.
	o If the user chooses to change password, input the new password and update it in the dictionary.
	o The program stops if the user chooses to terminate it.
	o Do not worry with input validation or option validation, assume the user will always follow the correct program flow and input the correct options.
	Sample output #1:

	Choose an option
	1 - Login
	2 - Register
	E - Exit
	1
	[Login]
	Username: jdoe01
	Password: 4321
	Incorrect username/password!
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	2
	[Register]
	Username: jdoe01
	Password: 4321
	User successfully added!
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	1
	[Login]
	Username: jdoe00
	Password: 4321
	Incorrect username/password!
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	1
	[Login]
	Username: jdoe01
	Password: 1234
	Incorrect username/password!
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	1
	[Login]
	Username: jdoe01
	Password: 4321
	Success!
	Choose an option
	3 - Change Password
	4 - Logout
	E - Exit
	4
	Logging Out...
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	E
	Terminating...
	Sample Output #2:

	Choose an option
	1 - Login
	2 - Register
	E - Exit
	2
	[Register]
	Username: jdoe01
	Password: 4321
	User successfully added!
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	2
	[Register]
	Username: scrappyOwl
	Password: ksuksuksu
	User successfully added!
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	1
	[Login]
	Username: jdoe01
	Password: 4321
	Success!
	Choose an option
	3 - Change Password
	4 - Logout
	E - Exit
	3
	[Changin password]
	Password: 1234
	Choose an option
	3 - Change Password
	4 - Logout
	E - Exit
	4
	Logging Out...
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	1
	[Login]
	Username: jdoe01
	Password: 4321
	Incorrect username/password!
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	1
	[Login]
	Username: jdoe01
	Password: 1234
	Success!
	Choose an option
	3 - Change Password
	4 - Logout
	E - Exit
	4
	Logging Out...
	Choose an option
	1 - Login
	2 - Register
	E - Exit
	1
	[Login]
	Username: scrappyOwl
	Password: ksuksuksu
	Success!
	Choose an option
	3 - Change Password
	4 - Logout
	E - Exit
	E
	Terminating...
	Submission Instructions:
	o Programs must follow the output format provided. This includes each blank line, colons (:), and other symbols.
	o Programs must be working correctly.
	o Programs must be written in Python.
	o Programs must be submitted with the correct .py format.
	o Programs must be saved in files with the correct file name:
	 Lab9A.py
	 Lab9B.py
	o Programs (source code files) must be uploaded to Gradescope by the due date.

