

Page 1 of 7

CSE 1321L - Python
Introduction to Python and PyCharm

Lab 1

Goals:

• Become familiar with the PyCharm Integrated Development Environment (IDE).
• Understand how to run applications from within an IDE
• Explore how Python applications work.
• Have a basic understanding of I/O – or Input/Ouput. This means printing things to the screen and

reading input from the user.
• Understand how to submit labs in Gradescope
• Understand the basics of the “autograder” in Gradescope, which auto-assigns a grade based on the

output of your programs.

For each lab program you develop, make sure to include the following “header” - replace the dots with
your section #, semester, your full name, your instructor’s name, and lab #:

Class: CSE 1321L
Section: ...
Term: ...
Instructor: ...
Name: ...
Lab: ...

Note: putting *anything* after the # symbol makes it a “comment” – which is ignored by the computer
For all your future labs and assignments, you are required to put the header so we know who submitted the file.
Thank you ahead of time!

What is an IDE?

An Integrated Development Environment, or IDE, is basically an application that programmers use to make
their lives easier when writing and testing code. You can think of it as Word (or Pages if you use a Mac),
but instead of using English or some other human language, it allows programmers to efficiently enter/edit
code and run it. More formally, it’s an application that provides almost everything needed by computer
programmers for software development. At the core of it is a “interpreter” which is responsible for taking
(human-readable) source code and converting it into binary code (1s and 0s) as it runs. An IDE
normally consists of at least a source code editor, build automation tools, and a debugger.
You can see a larger overview on Wikipedia:
https://en.wikipedia.org/wiki/Integrated_development_environment

Realize that, technically, an IDE is not needed. You could work directly with the interpreter from the
command line if you wanted to. This is something you should explore later on, because some companies,
like Apple, ask these things in job interviews.

Why do we use an IDE?

IDEs simplify the whole process, allowing programmers to write and test code quicker and with less errors
than using the interpreter directly. On top of that, many modern IDEs enable multiple developers coordinate
their work and also provide fast and intelligent error catching systems. So, all of this together makes any
IDE a one-stop place to write, run, and fix code.

Page 2 of 7

What is Gradescope and the Autograder?
Gradescope is where you’re going to submit your labs and assignments. For some of your labs (including
this one), you’ll submit your source code (which will end in .py for Python code).
When you do that, the autograder in Gradescope will take your source code, interpret it, and run some test
cases through it to see if you did what you were supposed to do. It then automatically assigns a grade.

However (and pay attention) – it’s picky. For example, if the lab requires you to print “Hello, World!” and
you print “Hello”, you won’t receive points for that part of the lab. The same thing would happen if you
forgot the “!” at the end – so it’s important to have a critical eye! The autograder will point out these errors
when you submit. Second, if the lab or assignment says “The filename must be called X”, you must do
that and the case must match. For example, if you must call your file “Lab1A.py” and you called it
“lab1a.py”, the autograder may or may not recognize it depending on the mood it is in that day.

No worries – if it’s not working for you, the autograder tries to give you feedback about what it’s seeing
based on input and output. Also, don’t forget you have a lab instructor and lab assistants who are here to
help.

Directions:

Installing PyCharm on your home laptop/workstation (if you haven’t done so)

1. Please visit this link: https://www.jetbrains.com/pycharm/download/
a. Please make sure you select the correct platform of your computer
b. Please make sure you download the community edition

2. After the download is complete
a. If you have a MAC you will need to open the .dmg file which was downloaded and drag the

application to the applications folder
b. If you have a WINDOWS PC you will need to run the downloaded setup executable and install

IntelliJ on your computer

Page 3 of 7

Creating new projects and configuring PyCharm the first time

1. Run PyCharm for the first time and go through the set-up screen; skip all the tips that it presents to you

2. Once you get to the main screen,
please click “New Project”

3. Please then select “Python” and
select the dropdown menu. Then,
click “Download Python” as show in the
two figures below

Please click the dropdown and then click download Python

Page 4 of 7

4. Please select the choice as shown in the screenshot, the version number may have changed since the
making of this document. Please note that you will only have to do this once, afterwards this Python
version will automatically be selected whenever you make a new Python project using PyCharm

5. After this, you will arrive at the screen where you will be instructed to

give your project both a name and a location. The name provided should match the Lab or
Assignment that you are solving (you should create a new project every time you start a new Lab or
Assignment). Each file you create (explained below) should represent each exercise solution. Then
click Finish.

Page 5 of 7

Creating Scripts

 As mentioned above, for every exercise solution, it has to have its own script unless otherwise
instructed.

1. To create a class, right-click the “Scripts” folder (as shown in the screenshot) and click New, then Python File.
2. Please give the script an appropriate name and press enter on your keyboard. Viola! You have created

a new script. Please give the scripts appropriate names as provided to you in either the assignment or
the lab exercises (see below). Naming your classes incorrectly may (and likely will) result in the
autograder assigning a zero for that part of the lab.

Running a Script
 Please click the green “play button” (as show in the screenshot below) and click “run”

Page 6 of 7

For this lab, you’re going to work with your IDE to code and run some programs we have provided you.
By the end of this lab, you will have three files that you need to submit to the autograder at the same time
– Lab1A, Lab1B and Lab1C. You should be able to create one project with three Python files (one for each
Lab part below).

Before you begin the next part of this lab, you might start feeling overwhelmed when you first look at the
source code below. There’s some strange symbols there! You’ll get comfortable with these as you go.

Three programs have three problems with them:

•

One of the programs below has a logic error in it – meaning that, while it runs, it
doesn’t produce the correct output. You must find the error and fix it.

• One of the programs below is written incorrectl, so you can’t even run it! Based on what we just told
you, you must figure out why, fix the error, save the file, and re-run the code.

• One of the programs runs fine – but has a typo in the output. If you were to submit
this file, the autograder won’t like it (because the output does not match). You may try submitting
the lab before fixing the error so you can see what the autograder does.

When creating the files for the programs below, they must be called Lab1A, Lab1B, and Lab1C (and have
the appropriate .py file extension).

Fix and run the programs below, then submit them in Gradescope.

================================== Program Lab1A.py ===================================
Program Lab1A.py
Demonstrate the difference between print with and without a newline.

 # Prints two lines of output representing a rocket countdown.

print ("Three... ", end =" ")
print ("Two... ", end =" ")
print ("One... , end =" ")
print ("Zero..." , end =" ")
print ("Liftoff!")
appears on first line
print ("Houston, we have a problem.")

Page 7 of 7

==================================== Program Lab1B.py ======================================
Program Lab1B.py
Demonstrate reading a string from the user.

Reads a character string from the user and prints it.

message = input ("Enter a line of text: ");
print ("You rote '" + message + "'");

=================================== Program Lab1C.py =================================
Program Lab1C.py
Demonstrate the use of the input function to read numeric data.

Calculates fuel efficiency based on values entered by the user.

miles = input ("Enter the number of miles: ")
gallons = input ("Enter the gallons of fuel used: ")

mpg = int (miles) * float (gallons)
print ("Miles Per Gallon: " + str (mpg))

Save all programs in one folder (call it Lab1) for future reference. You may also save this on a USB
device or OneDrive.

Instructions for submitting:

1. All practice programs must run and work correctly.
2. The programs must be checked by the end of the designated lab session by Lab Instructor or TA. Raise

your hand and someone will help you. If you are online, you will submit your files in Gradescope under
Lab1.

3. Source code files (.py) must be uploaded to Gradescope by due date.
4. If you have done things correctly, you will receive a grade of 105 for this lab, since the autograder likes it

when things work correctly/cleaning. We’ve tried asking the autograder not to do this, but she will not
change her mind.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

