
CSE 1321L: Programming and Problem Solving I Lab 

 

Assignment 5 – 100 points 

PyGame 

 

What students will learn: 

1) Incorporating prior programming knowledge to game development 

2) Developing a larger scale, graphical program 

3) Problem solving 

Overview: We will be making a basic video game using PyGame. While the result of this 
project should be fun, the real goal is to give you the opportunity to apply everything you’ve 
learned about programming up to this point. There are many fields of software development, 
but the fundamentals you’ve learned so far can be applied to all of them. 

 

 

 

Assignment 5A: Meteor Evader 

In this assignment, you will create a game where the player controls a spaceship and must 
navigate through space to avoid incoming meteors. The goal is to survive as long as possible 
by dodging meteors coming from all directions. The game will increase in diƯiculty over time, 
with more meteors appearing. The game ends when the player collides with a meteor. 

Requirements: 

 The game window must be 800 pixels wide by 800 pixels tall. 

 Player Control: 

o The player controls a spaceship using the W, A, S, D keys (up, left, down, and 
right respectively). 

o The spaceship should be represented using a Pygame Rect (e.g., a 40x40 
pixel rectangle). 

o Ensure that the player cannot move outside the game window boundaries. 



 Meteors should spawn from the edges of the screen (top, bottom, left, and right). 

 A random side is chosen for each meteor’s spawn location. 

 Based on the side from which a meteor spawns: 

o Top: Moves downward. 
o Bottom: Moves upward. 
o Left: Moves rightward. 
o Right: Moves leftward. 

 Meteor Movement: 

o Each meteor should have a horizontal (dx) and vertical (dy) speed 
component to control its movement direction. 

o The speed components are determined based on the side from which the 
meteor spawns so that it moves inward toward the center of the screen. 

o The meteors should vary in size and speed (randomly generate meteor sizes 
between 20x20 and 60x60 pixels and randomize their speed components). 

 New meteors should spawn every 5 seconds. 

 Gradually increase the spawn rate or speed of the meteors as the player survives 
longer. 

 Timer: 

o Implement a timer that displays how long the player has survived. 

o The timer will start when the game loop begins. 

o The timer will stop when the spaceship collides with a meteor (game ends). 

o The game will display the final survival time after a collision and reset the 
game. 

 The longer the player survives, the more meteors should spawn, making the game 
progressively harder. 

 Use Pygame’s colliderect() method to detect collisions between the player's 
spaceship and meteors. 

 If the spaceship collides with any meteor, the game should end. 

 Implement a scoreboard to display the player's longest survival time. 

 The longest survival time should be stored and displayed even after the player loses. 



 When the player’s spaceship collides with a meteor, play a crash-like or 
destruction-like sound. 

 Play a sound eƯect every time a new meteor spawns to alert the player. 

 Ensure the sound files are loaded using pygame.mixer.Sound() and play the sounds 
at the appropriate events during gameplay. 

 Gradually speed up or slow down the meteors over time based on how long the 
player survives. 

 Make meteors visually distinct (e.g., diƯerent colors or random shapes). 

 Optional: Add background music to play throughout the game 
using pygame.mixer.music. 

 

Hints: 

 Use pygame.Rect to represent both the spaceship and meteors for easy collision 
detection. 

 Randomize the spawning side and speed of each meteor 
using random.choice() and random.randint(). 

 Use pygame.time.get_ticks() or pygame.time.Clock() to manage meteor spawn 
timings and track the player's survival time. 

 Adjust meteor direction and speed using the dx and dy values based on where the 
meteor spawns. 

 Use pygame.font.Font() to display the timer and score on the screen. 

 To load and play sound eƯects, use pygame.mixer.Sound('filename.mp3').play(). 

 For background music, 
use pygame.mixer.music.load() and pygame.mixer.music.play(-1) to loop it 
continuously. 

 

 

 

 



 

 

 

 

SAMPLE OUTPUT: 

 

 



Submission: 

1. You will submit all required files to run your game. 

2. File names must be correct. 

3. Upload all files (simultaneously) to the assignment submission folder in Gradescope. 


