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A Random Graph Algorithm For Modeling Social Networks

To construct the random graphs, the following
algorithm was performed with parameters
(n,p,k,m,q):
1.k ER(n,p) graphs were created [2].
2.m additional influencer nodes were initialized.
3.For each influencer node, and for each of the
other nk+m-1 nodes, an edge was placed,
independently and with probability q between
them.
Due to computational limitations, a scaled-down
version of the Instagram network was simulated
using various parameter sets intuited from the
full-size network. Expectations of various
metrics were derived analytically, as well as
calculated from the simulations.

Social networks represent an interesting
reservoir of potential information on the
workings of society and many researchers seek
to model these networks in a random fashion.
Three of the trademark features of social
networks include a low average path length, a
relatively high clustering coefficient, and a
degree distribution following a power law [1].
Several attempts have been made to model these
networks, such as those by Erdős and Rényi [2]
and Barabási and Albert [3].
However, these attempts fail to display at least
one of the three aforementioned properties. Here
we attempt a novel algorithm to create multiple
clusters of small, highly connected subgraphs of
normal nodes using the ER method, which are
connected to each via a cloud of high-degree
‘influencer’ nodes, reminiscent of the BA
method. In doing so, this method seeks to
simulate the power law, while still maintaining
low average path length and high clustering
coefficients.

Table 1: Comparison of expected and calculated metrics from the 
random graph model using different values of q.

Most experimental and calculated metrics
correlate very well (Figure 1). An obvious
difference exists in average path length, where the
experimental number is far lower than the
expected value, which was calculated as an upper
bound. The intended degree distribution is a large
Poisson curve, with an extended right tail, which
is observed with lowest q-value, but not with the
higher values, for reasons discussed below
(Figure 2).

The approximate power law is enabled by the
clusters forming stacked Poisson distribution with
the influencers forming the right tail, assuming a
well-tuned q. The clusters further serve to shield
the clustering coefficient, allowing it to approach
p when nk>>m. The path length is heavily
dependent on q and m, as most paths must pass
through the influencer cloud. These results
demonstrate a very low path length, and one far
smaller than the expected due to the scaling down
of the network, which led to an artificially inflated
q. During experimentation, the path length was
increased to nearly 4.0 before the network
disconnected, by decreasing q.
Next steps involve determining an intuitive
guideline to select q and testing the algorithm on
an upscaled network. This latter will, however,
require significant optimization of the code and
considerably more computational resources.

Figure 2: Degree distributions of the random graph simulations.           
(a). q = 0.2 (b). q = 0.02 (c). q = 0.012 (d). an early, small simulation
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Expected Actual Expected Actual Expected Actual
Normal Node Connections 1400 1399 1040 1039 1024 1023
Influencer Node Connections 20400 20398 2040 2039 1224 1223
Total Connections 9.04x107 9.04x107 5.40x107 5.40x107 5.24x107 5.24x107

Average Path Length <4.614 1.986 <5.330 2.420 <5.630 2.694
Clustering Coefficient 0.3463 0.3517 0.4547 0.4634 0.4682 0.4768

q = 0.2 q = 0.02 q = 0.012

(a) (b)

(c) (d)

Equation 1: Probability Mass Function of Degree Distribution

𝑷𝑷 𝒅𝒅𝒅𝒅𝒅𝒅 𝑽𝑽 = 𝒚𝒚 =

𝒌𝒌(𝒏𝒏𝒑𝒑 + 𝒎𝒎𝒎𝒎)𝒚𝒚𝒆𝒆− 𝒏𝒏𝒏𝒏+𝒎𝒎𝒎𝒎 + (𝒌𝒌𝒌𝒌𝒌𝒌 + 𝒎𝒎𝒎𝒎)𝒚𝒚𝒆𝒆−(𝒌𝒌𝒌𝒌𝒌𝒌+𝒎𝒎𝒎𝒎)

𝒚𝒚! (𝒌𝒌 + 𝟏𝟏)

Figure 1: Social Network graph properties. (a) Low path 
length and high clustering. (b) Power law degree distribution..

http://social-dynamics.org/scale-free-network/(a) (b)


confusion matrix

				Cep		DSCT		ECL		HB		LPV		RRLyr		T2Cep		aCep		rejected								q = 0.2				q = 0.02				q = 0.012

		Cep		2705		0		102		0		0		63		75		4		34								Expected		Actual		Expected		Actual		Expected		Actual

		DSCT		0		6101		15		0		0		13		0		0		16						Normal Node Connections		1400		1399		1040		1039		1024		1023

		ECL		3		11		124844		1		0		11		0		0		20						Influencer Node Connections		20400		20398		2040		2039		1224		1223

		HB		0		0		1		255		0		0		0		0		3						Total Connections		9.04x107		9.04x107		5.40x107		5.40x107		5.24x107		5.24x107

		LPV		0		0		0		0		16622		0		0		0		0						Average Path Length		<4.614		1.986		<5.330		2.420		<5.630		2.694

		RRLyr		16		7		131		0		0		31642		0		2		19						Clustering Coefficient		0.3463		0.3517		0.4547		0.4634		0.4682		0.4768

		T2Cep		64		0		0		0		0		1		389		0		10						RRLyr		16		7		131		0		0		31642

		aCep		26		0		0		0		0		31		8		17		8						T2Cep		64		0		0		0		0		1

																										aCep		26		0		0		0		0		31



				Cep		DSCT		ECL		HB		LPV		RRLyr		T2Cep		aCep		Rejected

		Cep		2705		0		102		0		0		63		75		4		34

		DSCT		0		6101		15		0		0		13		0		0		16

		ECL		3		11		124844		1		0		11		0		0		20

		HB		0		0		1		255		0		0		0		0		3

		LPV		0		0		0		0		16622		0		0		0		0

		RRLyr		16		7		131		0		0		31642		0		2		19

		T2Cep		64		0		0		0		0		1		389		0		10

		aCep		26		0		0		0		0		31		8		17		8
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